Introduction to Science Study Guide

Science = the study of the world around us. Knowledge of the physical or material world gained through observation and experimentation. Scientific law vs. theory: Scientific law-Scientific theory-THE WAY SCIENCE WORKS Science involves critical thinking, or applying logic and reason to observations and conclusions. Observation vs. Inference: Observation-Inference-<u>Variables and Controls:</u> A variable is anything that can _____ in an experiment. Independent variable: The variable being _____ or ____ by the scientist. Dependent variable: The variable being _____ or ____ by the scientist. A _____ tests only one variable at a time. The Scientific Method: A series of logical steps to follow in order to solve problems. ✓ FORMULATE A _____ ✓ FORM A _ ✓ DESIGN AND CONDUCT AN _____ ✓ MAKE ______✓ _____ AND ______ DATA ✓ DRAW _____ √ FORMULATE _____ and _____ Making Measurements: measurements are made in this class using SI units. _____: distance between 2 points _____: space occupied. _____: the amount of matter in an object. _____: the force with which gravity pulls on a quantity of matter. Accuracy vs. Precision: Accuracy-

Precision-

(ex: a scale may be precise to the nearest 100^{th} of a gram, or +/- 0.01g)

Density =

Example: What is the mass of 10 mL of a liquid that has a density of 3.76 g/mL?

_		_	
1 em	beratu	re Con	versions

Temperature is a measure of the average kinetic energy in a system.

Water freezes atOF	Water freezes atOC
Water Boils atOF	Water Boils atOC
Human Body Temperature isOF	Human Body Temperature isOC
Percentage Error: Calculate this value in labs	where the accepted value is given.
% error =	
ORGANIZING DATA: Data is organized and part of Graph - visual representation of data 1)	axis
LINE GRAPH: best for displaying data that _	·
- Independent Variable:	
- Dependent variable:	
BAR GRAPH: useful when you want to	data for several individual items.

PIE CHART: ideal for displaying data that are _____

Significant Figures

!
<u>Scientific Notation:</u> scientist use special notation to express VERY LARGE or <i>very small</i> numbers. Ex: 300,000,000 m/sec = Ex: 1,007,000,000 sec =
Ex: 0.000 000 004 76 m =
Significant Figures Atlantic - Pacific Rule: -Decimal Present: Count from the Pacific side -Decimal Absent: Count from the Atlantic side Start counting at the first non-zero number and count until you reach the end of the number Ex. I: 3.00700 Ex. II: 300,700
Significant Figures in Calculations When multiplying and dividing, limit and round to the least number of significant figures in any of the factors.
Example: 23.0 × 432 × 19 =
When adding and subtracting, limit and round your answer to the least number of decimal places in any of th numbers involved in the calculation.
Example: 123.25 + 46.0 +86.257 =
Determine how many significant figures are in each of the following measurements:
1. 0.0034050 L
2. 33.600 m
3. 7500.0 g
4. 47,900 mm
5. 7,000,000,001 miles

6. 8.07 Hz_____

Round each of the following measurements off so that they each contain 3 significant figures (you may	
use scientific notation if you prefer):	

- 7. 366.2 L_____
- 8. 9,047,022 mg_____
- 9. 12.76 g
- 10. 999.9 J_____

Perform the prescribed operations. Round your answers to the proper number of significant figures. Include the appropriate units in your answer.

Dimensional Analysis

Given information:

Unit conversion map:	
Convert 14 gallons to kildurkins:	
Convert 14 barrels to hogsheads:	
Convert 3.00 bushels to farkins:	